
Journal of Statistical Physics, VOI. 14, No. 5, 1976 

The Onset of Instabilities 
in Nonequilibrium Systems 
G. Nicol i s ,  1 M.  M a l e k - M a n s o u r ,  1 A.  Van  Nypelseer ,  I 
and K. Ki tahara  ~ 

Received April 2, 1975 

The nonlinear master equation previously proposed by Malek-Mansour 
and Nicolis is applied to the analysis of unstable transitions leading to 
temporally or spatially organized patterns. The correlation length of the 
destabilizing fluctuations is determined, and a number of striking analogies 
with equilibrium phase transitions are pointed out. 
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1. I N T R O D U C T I O N  

In a previous series of papers, Prigogine and two of the present authors (1,2) 
have developed a local theory of fluctuations in nonlinear systems far from 
thermodynamic equilibrium. A simplified version of this theory has led to a 
nonlinear master equation for the reduced probability distribution concerning 
a small subvolume A V within a macroscopic system. This equation reads 

dP(X ,  AV,  t) _ Rch(AV ) + ~ ( X ) [ P ( X  - 1, AV,  t) - P (X ,  AV, t)] 
dt 

+ .~[(X + 1)P(X + 1, AV,  t) - X P ( X ,  AV,  t)] (1) 

where X denotes a set of  variables describing the composition of a chemically 
reacting mixture; hereafter X will be the numbers of  particles of the chemical 
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constituents; Rob denotes the contribution of chemical reactions within AV 
to the evolution of P(X, A V, t); ~ is a diffusion rate of exchange of particles 
across the surface surrounding AV; the properties of this coefficient are 
analyzed in detail in Ref. 2; and ( X )  is the stochastic mean of X given by 

( X )  = ~ XP(X, AV, t) (2) 
X = 0  

The purpose of the present paper is to apply the nonlinear master 
equation to the analysis of fluctuations leading to instabilities. The existence 
of such instabilities in nonlinear systems involving chemical reactions and 
diffusion is now firmly established. Beyond instability these systems may 
evolve to states showing spatial or temporal order, which have been called 
dissipative structures. Our object here is to understand the spontaneous onset 
of these transitions through fluctuations by solving approximately the master 
equation (1). As we shall see, at the critical point of the unstable transition 
will be related to the chemical parameters of the system contained in the terms 
Roh(A V). Now, as shown in Ref. 2 in an ideal mixture, ~ is also related to the 
range l of the fluctuation through 

= f(T)/ l  "~ Dill, (3) 

where D is Fick's diffusion coefficient, IT is the mean free path, andf (T)  is a 
function of the temperature. Thus, according to Eq. (3), the range of a 
fluctuation capable of destabilizing the reference state will depend on the rate 
of its growth as described by the chemical reactions, and vice versa. In the 
subsequent three sections we shall carry out these calculations in detail on 
simple chemical models involving, successively: marginally stable systems, 
systems giving rise to limit cycles, and systems giving rise to spatial dissipative 
structures. 

Throughout the paper, a number of striking analogies with equilibrium 
phase transitions will be pointed out. Such analogies had to be expected from 
the very form of Eqs. (1)-(3), which take into account the coupling between 
spatial fluctuations through a self-consistentfield type of approximation. This 
self-consistent field character of Eq. (1) is seen most clearly from its derivation 
reported in Ref. 2, where the direct correlations between the subvolume AV 
and the surroundings have been neglected in a first approximation. 

In spite of the fact that spatial correlations are not taken into account 
explicitly in the present description, it will be natural to regard the range 
parameter l as a coherence length, that is, as the spatial dimension over which 
the fluctuations preserve a coherent character. This is related to the fact that, 
as we shall see in the sequel, the short-time behavior of fluctuations can be 
treated satisfactorily by means a cumulant expansion truncated to the second- 
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order moments. Because of this the characteristic parameters appearing in 
the equations for the second-order cumulants--which describe the effect of 
fluctuations--are identical  to those appearing in the first moment equations. 
To a good approximation the latter are, in turn, related to the phenomeno- 
logical equations of evolution. Thus, it can be claimed that a self-consistent 
master equation contains all pertinent parameters which are likely to influence 
the behavior of the system in the vicinity of the transition point. 

. M A R G I N A L L Y  STABLE S Y S T E M S  

In this section we solve the master equation (1) for the Volterra-Lotka 

A + X---~ 2X 

X + Y - + 2 Y  

Y + B - - + E + B  

model: 

(4) 

which is marginal ly  stable and is surrounded by an infinity of closed trajectories 
in the ((X), { Y)) plane representing periodic behavior. This property makes 
this system (without diffusion) s tructural ly  unstable to all perturbations 
modifying even slightly the form of the evolution equations. 

The master equation describing the fluctuations and including the effect 
of ,diffusion takes the form 

(5) 

d P ( X ,  Y,  t)  1 
= ~oo [ A ( X  - I)P(X - 1, Y, t)  - A X P ( X ,  Y, t)] 

1 
+ ~oo [(X + 1 ) ( Y -  1)P(X + 1, Y -  1, t)  - X Y P ( X ,  Y, t)] 

1 
+ -;r  [ B ( Y  + 1)P(X, Y + 1, t )  - B Y P ( X ,  Y, t)] 

/Vo 

+ ~ x ( X ) [ P ( X  - 1, Y, t)  - P ( X ,  Y, t)] 

+ ~ x ( X  + 1)P(X + 1, Y, t) - ~ x X P ( X ,  Y, t)  

+ ~ y ( Y ) [ P ( X ,  y - 1, t)  - P ( x ,  y ,  t)] 
+ ~y(Y + 1)P(X, Y + 1, t) - ~yYP(X, Y, t) (6) 

Xo ~- ( x )  = B, Yo-~ ( Y >  = A 

All forward reaction rates are inversely proportional to a large number No 
proportional to the size of the system. 

It is well known (1"3~ that system (4) admits a nontrivial steady state 
solution: 
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To solve this equatior, we transform to the generating function repre- 
sentation~l,4) 

F(sl ,s2,  t) = ~ ~ s lXsJP(X,  Y , t )  (7) 
X=O Y=O 

Moreover, we introduce the cumulant generating function by the relation c~ 

F(sl,  s2, t) = exp[N0~b(sl, s2, t)] (8) 

We scale the various parameters by No 

A = ~No, B = flNo, X = xNo, Y = yNo (9) 

and switch to new variables given by 

= s l -  1, ~ = s 2 -  1 (10) 

Equation (6) becomes 

= [ ~ ( r  + 1) - ~ x r  + [ - ~  - ~ ] ~  

+ (~ + 1)(~ - ~) ~ U~ + N0 0~ 0~/ 

For No large s the second derivative term of ~b can be neglected in Eq. (1 l). 
Note that this imposes certain restrictions on the size of the volume A V, 
which, however, are fulfilled once the mixture is not extremely dilute. The 
truncated Eq. (1 l) admits solutions of the form 

~b = a ~  + a2~7 + �89 2 + b~2~1 + �89 + "" (12) 

The coefficients b,j describe the deviation of the fluctuations from the Poisson 
regime. Indeed, from Eqs. (11), (8), and (7), we find 

Noat = <X>, Noa2 = < Y> 

Nobx~ = <3X2> - <X>, Nob22 = <3y2> _ <y>, (13) 

Nob12 = <~X 3 Y> 

Substituting now (12) into (11), we obtain a set of five coupled nonlinear 
equations for the coefficients a~, a2, b~j.. A quasilinearization of these equations 
is possible by substituting a~, a2 by the deterministic averages given by (5). 
This restricts us automatically to fluctuations around the steady state and to 
a time scale sufficiently short for the fluctuations to modify the macroscopic 

a Recently, Kubo et al/8) developed systematically the mathematical properties of the 
master equations in the limit No ~ co. 
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Fig. 1. Time dependence of ab** + /~b22 for 
various values of the parameter ~. 

/ ~ ~ = 0 . s  

t t 
obs. 

behavior. Since we are interested primarily in the onset  of  fluctuations, this 
procedure is legitimate. We obtain (setting also ~@x = -@~ = 9 )  

d b l l / d t  = 2(~5 - 5b1~. - ~ b ~ )  

d b 2 2 / d t =  2(cq3 + 2~b12 - -~b=2) (14) 

db12/dt = - a f t  + e~bll -- 5b22 - 2~b12 

A first integral of  (14) can easily be deduced. F rom the first two equations 
we have 

(d/dt)(~zb~ + 8622) = 2c~5(~ +/3)  - 2~(c~b1~ + 5b22) (15) 

Integrat ing with the initial condit ion 

bll  = b22 = 0 (16) 

we obtain 

,~bl~ + 5b2~ = (1 /~ )~5(~  + 8)(1 - e - ~ ' )  (17) 

A similar behavior  is found  for bl=. 
Figure 1 represents this solution for  various values of  9 .  For  -@ = 0 we 

find that  fluctuations increase in time and remove the system from the 
Poisson regime. This is in agreement  with previous calculations by Prigogine 
and Nicolis3 5~ On the other hand, the least finite value of-@ appears to stabilize 
the system to a steady state for the fluctuations after a time which is longer, 
the smaller the 9 .  For  ~@--->az the Poisson distribution is recovered, as expected 
f rom the general ideas advanced in our  previous paper (ReE 2). Compar ing  
now with Eq. (3) relating -@ to the size of  the subsystem inside the volume 
AV, we arrive at the conclusion that  there exists no finite critical coherence 
length o f  unstable fluctuations. 4 This is a consequence o f  the structural 

4 In fact, if the time scale of observation is sufficiently short (see Fig. 1), a similar phe- 
nomenon to nucleat!on would appear as the stabilized fluctuations will correspond only 
to a -~ larger than some critical value, e.g., -@ ~ 2 according to Fig. 1. It should be 
pointed out, however, that for such time scales the description adopted in this paper 
may well break down. 
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instability of the model at the marginal state as well as of the fact that in 
our analysis the phenomenon of extinction of the populations has not been 
taken into account. It is most likely that in a more accurate treatment, the 
condition that extinction should not occur will introduce a critical value of 

or, equivalently, of the coherence length of the fluctuations that could lead 
to extinction. This point has been verified in an exactly soluble model analyzed 
in Ref. 2. 

In the next section we consider a model which, beyond the state of 
marginal stability, exhibits an instability leading to sustained oscillations of 
the limit cycle type. 

3. T H E  O N S E T  OF A L I M I T  CYCLE 

We consider the autocatalytic chain(7~ 

A - + X  

B + X- -~Y + D 
2X + Y --+ 3X (18) 

X - + E  

The forward rate constants of the second and third steps are, respectively, of 
the order No 1 and No 2, where No is the size parameter introduced in the 
previous section. 

The equations of mass balance for this scheme have been studied exten- 
sively both for spatially uniform systems ~7,8~ and for inhomogeneous sys- 
tems.~7,9) The following properties have been established in the case of systems 
which are maintained macroscopically homogeneous: 

a. The system admits a single steady-state solution: 

Xo ~- ( X )  = A,  Yo ~- ( Y )  = (B/A)No (19) 

b. The steady state is 

a stable node for 

a stable focus for 

an unstable focus for 

an unstable node for 

where 

0 < / 3 <  (c~- 1) 2 

( c , -  1) 2 </3 <cz 2 + I 

~2+  1 < / 3 < ( ~ +  1) 2 

/3 > (~ + 1) 2 

,~ = A / N o ,  /3 = e / N o  (20) 

We may now write a master equation for system (18) including the effect 
of diffusion. We solve this equation by the method of cumulants described 
in the previous section and proceed to a quasilinearization of the first five 
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moment equations by substituting the mean values by the deterministic ex- 
pression (19). It turns out that the results differ markedly when the diffusion 
rates ~@x and ~@y for X and Y are equal or different. Both cases turn out to 
correspond to a distinct behavior of the determinis t ic  equations of evolution, 
provided ~ are replaced by the Fickian diffusion coefficients D~. This analogy 
is a result of the asymptotic limit No -+0% which permitted us to treat the 
small volume A V as a "macroscopic"  system and to truncate the hierarchy 
of moment equations to the second-order cumulants. When D x  = D r  the 
macroscopic equations, subject to appropriate boundary conditions, lead to 
an oscillatory instability and subsequently to a uniform limit cycle regime for 
the entire system. In the case of Dx :# D• a symmetry-breaking instability 
becomes possible, ~v,9~ leading to a space-dependent steady-state solution. In 
this section we shall investigate the onset of a limit cycle through fluctuations, 
postponing until Section 4 the analysis of spatial dissipative structures. 

For Dx = Dr = D, which in the stochastic formalism is translated by 
the equality ~x  = ~Y -- ~ ,  the equation for the quantities b~. introduced in 
the previous section reads 

~ = ~ - c ~  2 - 1 - 2-@ ~2 
\ b22 - 2~ - 2~ 2 - 2 ~  

\b22  

It should be pointed out that a number of results in this paper rely on 
the truncation of the moment equations and the subsequent identification of 
the stochastic and deterministic means in the equations for the cumulants. 
The reason why this procedure is legitimate is that we deal with " s m o o t h "  
transitions, where the dissipative structure emerges with a macroscopically 
infinitesimal amplitude slightly above the critical point. In contrast, in situ- 
ations involving multiple steady states separated by a finite distance, the 
truncated moment equations become inadequate and one has to deal with the 
complete master equation/1~ 

Let us now come back to Eq. (21). The eigenvalues of the matrix of the 
coefficients in these equations are 

o J 1 = / 3 -  c~ 2 -  1 - 2 - ~  
(22) 

co• = / 3 -  c~ 2 -  1 - 2 ~  + [ ( f l -  ~ -  1) 2-4c~2] 1/2 

Thus, system (21) will admit a stable steady-state solution under the following 
conditions: 

(a) For any-@, if 0 < / 3 <  c~ 2 + 1 (23) 
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I 

UNSTABLE 

~ ~  UNSTABLE 

~2+1 ((~+1) 2 

Fig. 2. Coherence length of a fluctuation at 
the critical point versus the chemical param- 
eter/3. Here L1 = f (T)[2/( /3 - a 2 - 1)l and 
L2 = f ( T ) 2 / { / 3 -  ~z - 1 + [(/3 - a 2 - 1) 2 

- 4a=11/2}. 

(b) Fo r  0 ~ >  �89  a 2 -  1), if a 2 + 1 < / 3  < (c~+ 1) 2 (24) 

(c) For  .~ > �89 a 2 -  1 + [ ( / 3 -  a 2 -  1) 2 -  4az] 1/2} if /3 > ( a +  1) z 
(25) 

In  these regions a local f luctuation will not  increase. Thus,  the reference 
state (19) will remain  asymptot ical ly  stable. 

We m a y  now combine  relat ion (23) to (25) with Eq. (3) relating • to 
the coherence length l o f  the fluctuation. We define a critical length 1r by the 
relat ion 

lc = f ( T ) / @  (26) 

where ~c is given by (24) and (25) when the equality sign is satisfied. Figure 2 
represents the relation between lc and the chemical parameter /3 .  

I t  is instructive to phrase  relation (26) in the language of  equil ibrium 
critical phenomena .  To  this end we consider the ne ighborhood  of  the first 
instability of  the steady s t a t e - - the  analog of  the critical po in t - -def ined  by the 
value 

/3~ = a 2 + 1 (27) 

Relat ion (26) becomes  

l c / 2 f ( T )  = 1/(/3 - /3c)1 (28) 

Under  the same condit ions the o r d e r  p a r a m e t e r ,  that  is, the radius p of  the 
limit cycle, varies as (m 

P oc (/3 - /3~)  1/2 for  /3 > /3~ 
(29) 

p = 0  for  /3 ~</3~ 

Thus,  the analogs of  the critical exponents  s/3* and v of  equil ibrium theory 
become 

/ 3 " = � 8 9  v =  1 (30) 

I t  is interesting to observe tha t  in spite o f  the self-consistent field character  
o f  the mas ter  equat ion (1), there emerges a "nonc lass i ca l "  exponent ,  namely  

s We introduce here the symbol/3* in order to avoid confusion with the chemical param- 
eter/3 used throughout this paper. 
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v = 1, which in any theory of critical phenomena of the Landau type (11~ is 
always equal to /3" = �89 A close inspection of Eq. (3) reveals that (2~ this 
nonclassical behavior stems from the appearance of the relaxation length lr 
in the equation relating -~ and l, rather than of the coherence length l alone. 
This is in turn related to the nonequilibrium character of the phenomenon 
under consideration, which introduces into the theory the effect of long- 
wavelength excitations like sound waves whose velocity is related to the 
mean free path lr. It is instructive to point out the similarity between this 
picture and the ideas underlying Wilson's extension of the Landau theory of 
equilibrium phase transitions <12~: The very essence of Wilson's approach is to 
introduce into the "classical theories" the influence of fluctuations with 
"intermediate" wavelengths, which are shown to modify deeply the behavior 
of the long-range correlations in the neighborhood of the critical point. The 
analogy with Wilson's theory will become more obvious when the correlation 
terms neglected in the derivation of Eq. (1) will be incorporated into the 
theory. 

Note that a direct solution of the master equation (1) or a truncation of 
the moment equations to a higher level than that of the second-order cumu- 
lants might produce further deviations of the critical indices/3" and v from 
the "classical" values, most probably in the form of nonsimple fractional or 
even irrational numbers. Moreover, the correspondence with the deterministic 
results will be less direct in this case. 

Bearing these points in mind, one may now interpret Fig. 2 as follows. 
Suppose that an internal fluctuation (the same reasoning holds for an 

external disturbance as well) appears at the vicinity of a point inside &V. 
If  the range of this disturbance, i.e., the length over which it preserves a 
coherent character, is in the dashed region of Fig. 2, then the decay process 
of the local fluctuation (roughly measured by ~ -1 )  will take over and the 
disturbance will die out. For/3 < a2 + 1 even if an infinite coherence length 
is imposed the disturbance will decay, but for/3 > a2 + 1 disturbances whose 
range exceeds lc will be amplified and spread throughout the system. The 
latter will remain stable with respect to fluctuations whose 1 < lc. For ~ > 
(a + 1) 2 the range of decaying fluctuations will decrease rapidly and finally, 
for in the unstable region (~ >> ~2 + 1) the system will be unstable with 
respect to infinitesimal fluctuations. 

The similarity with the ideas underlying nucleation theory is tempting 
and will be developed further in Section 5. 

It is instructive to estimate lc numerically. According to the mean free 
path theory of transport phenomena, we have 

f(r) ~_ D/l r N ~ (31) 
where 8 is the mean thermal velocity (essentially the velocity of sound). 
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Thus, the value of lc depends on two competing factors: the tendency to 
smear out a local inhomogeneity by thermal motion, as expressed by ~; and 
the tendency to amplify this inhomogeneity, as expressed by the excess 
chemical rate/3 - a 2 - 1. In a gas, 6 ~_ 103 m/sec. Thus, for fi, ~,..., of  the 
order of unity, lc is a macroscopic length. In different terms, it is extremely 
difficult to form spontaneously in this type of system an unstable 
fluctuation, since one needs a macroscopic coherence length. On the other 
hand, if the reactions are very fast, with rate constants of the order of 
106 sec -1, then lc becomes of the order of 10 -8 cm or less. Another way to 
favor the formation of destabilizing fluctuations is to move far in the unstable 
region. Thus, for a and/3 of the order of 10(a 2 + 1), l~ is reduced by a factor 
of ten. Finally, if the reaction occurs in a medium that does not propagate 
sound-like disturbances very efficiently, nucleation will again be enhanced 
with respect to what happens in a gaseous phase. 

We close this section with a short remark concerning the composition 
fluctuations themselves within the volume AV. From Eq. (21) it becomes 
obvious that the latter diverge in the neighborhood of the reference state as 
(noting also that ~c -+ 0 at the critical point/3~ = ~2 + 1) 

1 1 1 AX 2 oc . . . .  (32) 
o~i (/3 _ ~o)1 (/3 _ ~ ) ~ B "  

Again, this relation is analogous to the ones prevailing in equilibrium phase 
transitions. (~3) Analogies between chemical instabilities and phase transitions 
have also been pointed out by Nitzan et  al. ,  ( ~  Kuramoto and Tsuzuki, ~15~ 
and McNeil and Walls. (~6~ 

4. T H E  O N S E T  OF A SPAT IAL  D I S S I P A T I V E  S T R U C T U R E  

We consider now the more general case where X and Y in model (18) 
are characterized by two different coefficients ~x  and ~y. Previous analyses ~7,9~ 
based on the solution of the macroscopic mass balance equations in the 
presence of diffusion have revealed the emergence of regular spatial patterns 
of chemical concentrations in a previously uniform medium. Here we want 
to understand the spontaneous onse t  of these patterns through fluctuations. 

Following the same procedure as in Sections 2 and 3 and truncating the 
hierarchy of moment equations to the level of second-order cumulants, we 
obtain a differential system for the mean quadratic fluctuations which has the 
same form as in Eq. (21), except that the matrix of the coefficients is now given 
by 

/3 /3 _ ~2 _ 1 - Nx - ~ r  ~2 (33) 
0 - 2/3 - 2~ ~ - 2Ny 
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Fig. 3. Coherence  length  of  a f luc tuat ion at  
the  crit ical po in t  versus the  chemical  p a r a m -  
eter /3 in the  case of  different diffusion co- 
efficients, e = 2, ~ x / N Y  = ~. 

l UNSTABLE. 

STABLE I ','k. 
0 I I \ ic ' , '  "\.\. - 

o ~j:,~ 

The eigenvalues of this matrix are 

oJe = / 3  - c~ 2 - 1 - ( ~ x  + N r )  + ~ / N  ( 3 4 )  

with 

zx = [/3 - .~ - ] - ( ~ x  + ~ ) ] ~  - 4 ( ~  - / 3 2 ~  + ~ + - ~ x  + ~ )  
(35) 

The second moment equation will admit a nonoscillatory instability of 
the steady-state solution under the following conditions: 

/3 > /3~ = 1 + ++2 ~x c+2 + ~x + ~---~ (36) 

1 3 < / ~ =  1 +c~ 2 + ~ x + ~ Y  (37) 

Introducing the coherence length l through the relations 

~ ~_ Dx/tl/', ~ ~- D~//U (38) 

we finally obtain 

[3c = 1 + ~2 Dxlr r D x  ~21lrr (39a) 
D---;- 

fic = 1 + c~ 2 Dx Dr (39b) 

Figure 3 represents the critical curves lc = lc(/3) corresponding to relations 
(39a) and (39b) in the [l,/3] plane for ~ = 2 and Dx/l~ x = ](Dy/lrr) .  

The important new point is that in the region/3o < /3 < /31 (see Fig. 3) 
the instability of the reference state involves fluctuations o f  f in i te  coherence 
length. 6 In this same region, the imposition of large-scale fluctuations (I --~ oo) 

6 See G r a h a m  ~17~ for  a s imilar  r e m a r k  in the  context  of  the  B6nard  problem.  
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stabilizes the steady state. Beyond fl = tic 1, however, the behavior becomes 
similar t o  that outlined in the previous section. In contrast, the "order  
parameter"  behaves in exactly the same way as in the limit cycle case. 
Indeed, the amplitude of the emerging dissipative structure beyond /3c ~ 
varies as (9) 

ilxll o)1 2 (40) 

At first sight, the occurrence of a finite coherence length and of a 
continuous order parameter seems paradoxical and difficult to fit in the frame 
of  the more familiar equilibrium critical phenomena. A closer inspection, 
however, reveals the existence of a second characteristic coherence length 7 
which diverges as one moves to the critical point/3~ ~ from the pretransition 
region. In this way the problem under consideration resembles closely 
the crystallization problem. In the latter, within the ordered phase there 
exists a finite correlation length (the lattice parameter), whereas in the 
disordered phase there appear long-range correlations up to the solidification 
point. 

To see the appearance of the second coherence length in our problem, 
we consider the marginal stability equation (39a) in the equivalent form 

l "gl ( Ox ) l 7 -~ Ox + 1 + a2-z -- - fl + = 0 (41) 

where 

= Ddl& = Dy/l?" (42) 

We expect that the quantity 1/l will scale the spatial coordinate r12 appearing 
in the correlation function g(A V1, AVe) between two spatial regions (see also 
the comments made at the end of the introduction): 

g(AV~, AV2) -- g(r12/l) (43) 

If  1/l is real, the function g will describe a self-maintained correlation of 
macroscopic range between spatial regions. In contrast, a complex value of 
1/l will imply spatial damping in the form of evanescent waves emanating 
from AV. The point is that Eq. (41) gives rise to complex-valued l's in the 
"disordered"  region fl < ric ~ One finds 

1 1 1 (44) 
T=T  -+ ;7; 

7 The existence of a diverging correlation length in the B6nard problem was first pointed 
out by Zaitsev and Shliomis: TM 



The Onset of Instabilities in Nonequilibrium Systems 429 

where 

and 

1 1 ( l + ~ 2 0 x )  
= 20x -~y - / 3  (45a) 

I 1 / 3 o 1 ~  @ /3 ) ~  
= o S  1/3 - - - (45b) 

/3c~ 1 +~k~-~r J /3_ = I -  (46) 

If/3 is slightly subcritical, then 

/3_ </3 </3c ~ (47) 

and 12 will indeed be a real quantity. As the critical point/3~ 0 is approached, 
the length ls diverges as [see also Eq. (42)] 

Dx/lr x 
l~ = (/3 - F__)I, ~ 1/3 - / 3 c ~  (48)  

i.e., according to a "classical exponent" 

v = - / 3 * -  2~ (49) 

where/3* is the exponent appearing in the order parameter equation (40). 
Thus, the waves emanating from a region AV are no longer evanescent but 
give rise, instead, to a sustained regime characterized by the correlation length 
l~. A simple calculation shows that l~ is identical to lc ~ (see Fig. 3) at the 
critical point. 

5. C O N C L U D I N G  R E M A R K S  

In this paper we analyzed the transition to instability in a class of non- 
equilibrium systems, by means of a master equation containing explicitly the 
effect of the spatial range of fluctuations through a meanfield type of approxi- 
mation. This enabled us to compute the coherence length of the fluctuations 
in the region of marginal stability and to study its behavior in the vicinity of 
the "critical point"  where the first instability occurs. We have pointed out 
some striking analogies with equilibrium critical phenomena and drawn 
attention on the relation between our approach and the ideas underlying the 
Landau-Wilson theory of phase transitions. 

One of the most unexpected results is the emergence of an intrinsic co- 
herence length of fluctuations in spatially uniform systems, even when the 
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latter undergo an instability preserving spatial homogeneity (Section 3). The 
appearance of such a coherence length seems more natural when the precursor 
of a spatial dissipative structure emerges through fluctuations (Section 4). 
Indeed, in the latter case there exists a characteristic length already in the 
macroscopic equations of evolution, namely the wavelength of the pattern 
emerging beyond the instability. In either case, the independence of the 
coherence length of both the microscopic properties at the atomic level as 
well as of the dimensions of the container is strongly reminiscent of the ideas 
underlying the scaling hypothesis in equilibrium critical phenomena. In 
essence, we have shown that the critical behavior of such time-dependent 

quantities as the fluctuations of composition AX 2' or the correlations AXA I ~ 
obeys "universal" laws involving an intrinsic coherence length. 

As regards the critical behavior of the spatial correlation function, we 
may note that, in spite of the qualitative arguments advanced in the intro- 
duction as well as in connection with Eqs. (43)-(48), the study of this quantity 
is beyond the range of validity of the master equation (1). An explicit analysis 
of a multivariate master equation leading to the critical behavior of spatial 
correlations has been carried out recently by Lemarchand and Nicolis3 TM 

In spite of the appealing analogies between nonequilibrium instabilities 
and equilibrium critical phenomena, one should be fully aware of the follow- 
ing important point. When an equilibrium phase becomes unstable, thermo- 
dynamics implies that the second differential of an appropriate potential 
vanishes: 

(~4, )o  = o (50) 

This, together with Einstein's fluctuation law 

p oc exp(324,/2k) (51) 

implies that the probability of large-scale fluctuations tending to destabilize 
the reference phase becomes of the order of unity. Now, to our knowledge, 
this result cannot be extended straightforwardly to nonequilibrium instabilities, 
for several reasons. First, according to Sections 3 and 4, the destabilizing 
fluctuations in this case should have a range exceeding some critical value. 
To estimate the probability of occurrence of such fluctuations, one has to 
solve the master equation [see Eqs. (1)-(3)] supplemented with an a priori 
estimation of the parameter l in terms of the characteristics of the medium. 
So far this has not been achieved. Nevertheless, it appears reasonable to 
expect that the system will still be dominated by short-range fluctuations. 
This would imply that the destabilizing fluctuations would be rather rare 
events. This resembles closely the phenomenon of nucleation in first-order 
transitions (see, e.g., Ref. 20). The analogy can in fact be pushed further. 
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Suppose a Gaussian assumption of the probability distribution of  the macro- 
variables (Nj} is made slightly below the critical point: 

P oc exp ~ a, , ( l )  3Nj(1) 3Nj,(I) (52) 
l J J" 

where we have factorized the dependence of P on the coherence length ! 
associated with the various ((normal modes) ) .  We know from Sections 3 and 
4 that as l -+ lc the fluctuations, once produced spontaneously through (52), 
will tend to destabilize the system. The probability of such fluctuations would 
be appreciable provided the matrix 

lira a , , ( l )  (53) 
l ~ l  c 

had a zero eigenvalue. Otherwise, the quantity 

ajj,(l)(SNj(1) 8Nj.(I)) (54) 
l<<.lcJJ" 

would provide the entropy o f  activation that it would be necessary to overcome 
in order to enter into the unstable region. So far, no evidence for a zero 
eigenvalue of (53) exists for typical examples of chemical dissipative struc- 
tures. In this respect, we may note that the important discovery of a kinetic 
potential in the B6nard problem ~17> arises from the fact that this problem can 
be reduced to a self-adjoint equation for a single variable. Moreover, the 
calculations reported in Ref. 16 follow the Langevin method of random forces, 
which are taken to be delta-correlated in space and time, an assumption which 
did not have to be invoked in the present work. 
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